Skip to main content
Log in

Fibrillar polymer–polymer composites: morphology, properties and applications

  • Stretching the Endurance Boundary of Composite Materials: Pushing the Performance Limit of Composite Structures
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Micro- or nano-fibrillar composites (MFCs or NFCs) are created by blending two homopolymers (virgin or recycled) with different melting temperatures such as polyethylene (PE) and poly(ethylene terephthalate) (PET), and processing the blend under certain thermo-mechanical conditions to create in situ fibrils of the polymer that has the higher-melting temperature. These resulting fibrillar composites have been reported to possess excellent mechanical properties and can have wide ranging applications with suitable processing under controlled conditions. However, the properties and applications very much depend on the morphology of created polymer fibrils and their thermal stability. The present paper develops an understanding of the mechanism of micro-/nano-fibril formation in PE/PET and polypropylene (PP)/PET blends by studying their morphology at various stages of extrusion and drawing. It is revealed that this subsequent mechanical processing stretches the polymer chains and creates fibrils of very high aspect ratios, thus resulting in superior mechanical performance of the composites compared to the raw blends. The study also identifies the primary mechanical properties of the main types of MFCs, as well as quantifying their enhanced resistance to oxygen permeability. Furthermore, the failure phenomena of these composites are studied via application of the modified Tsai–Hill criterion. In addition to their usage as input materials in different manufacturing processes, possible applications of these fibrillar composites in two different areas are also discussed, namely food packaging with controlled oxygen barrier properties and biomedical tissue scaffolding. Results indicate a significant scope for using these materials in both areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Utracki LA, Shi ZH (1992) Polym Eng Sci 32(24):1824

    Article  CAS  Google Scholar 

  2. Shi ZH, Utracki LA (1992) Polym Eng Sci 32(24):1834

    Article  CAS  Google Scholar 

  3. Bordereau V et al (1992) Polym Eng Sci 32(24):1846

    Article  CAS  Google Scholar 

  4. Huneault MA, Shi ZH, Utracki LA (1995) Polym Eng Sci 35(1):115

    Article  CAS  Google Scholar 

  5. Padilla-Lopez H et al (2003) Polym Eng Sci 43(10):1646

    Article  CAS  Google Scholar 

  6. Tager AA (1977) Polym Sci USSR (English Translation of Vysokomolekulyarnye Soyedineniya Series A) 19(8):1893

    Google Scholar 

  7. Woodcock SE, Johnson WC, Chen Z (2004) Polym News 29(6):176

    Article  CAS  Google Scholar 

  8. Plate NA, Litmanovich AD, Kudryavtsev YV (2004) Vysokomolekularnye Soedineniya. Ser. C Kratkie Soobshcheniya 46(11):1834

    CAS  Google Scholar 

  9. Paul DR, Barlow JW (1979) In: Cooper SL, Estes GM (eds) Multiphase polymers. Anaheim, California, American Chemical Society (Adv in Chem Ser 176), Washington, DC

  10. Lipatov YS (1978) Polym Sci USSR (English Translation of Vysokomolekulyarnye Soyedineniya Ser A) 20(1):1

    Google Scholar 

  11. Mark J (2004) Physical properties of polymers. Cambridge: Cambridge University Press, 519 p

  12. Li Z-M et al (2002) Mater Res Bull 37(13):2185

    Article  CAS  Google Scholar 

  13. Mingbo Yang ZL, Feng J (1998) Polym Eng Sci 38(6):879

    Article  Google Scholar 

  14. Migler KB (2001) Phys Rev Lett 86(6):1023

    Article  CAS  Google Scholar 

  15. Fuchs C, Bhattacharyya D, Fakirov S (2006) Compos Sci Technol 66(16):3161

    Article  CAS  Google Scholar 

  16. Fakirov S, Evstatiev M (1994) Adv Mater 6(5):395

    Article  CAS  Google Scholar 

  17. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  18. Fakirov S (1990) Solid state behaviour in linear polyesters and polyamides. Prentice Hall, NJ

    Google Scholar 

  19. Fuchs C et al (2006) Compos Interf 13(4–6):331

    Article  CAS  Google Scholar 

  20. Fakirov S, Evstatiev M, Friedrich K (2002) In: Fakirov S (ed) Handbook of thermoplastic polyesters: homopolymers, copolymers, blends and composites. Wiley-VCH, Weinheim, 1377 pp

  21. Ihm DW, Hiltner A, Baer E (1991) Microfiber systems a review, High performance polymers. Munich, Hanser, pp 280–327

    Google Scholar 

  22. Friedrich K et al (2005) Compos Sci Technol 65(1):107

    Article  CAS  Google Scholar 

  23. Fakirov S et al (2004) J Macromol Sci Phys 43B(4):775

  24. Evstatiev M, Fakirov S, Friedrich K (1995) Appl Compos Mater 2(2):93

    Article  CAS  Google Scholar 

  25. Evstatiev M et al (2002) Polym Eng Sci 42(4):826

    Article  CAS  Google Scholar 

  26. Li Z-M et al (2003) Polym Eng Sci 43(3):615

    Article  CAS  Google Scholar 

  27. Li Z-M et al (2002) Mater Lett 56(5):756

    Article  CAS  Google Scholar 

  28. Li Z-M et al (2004) J Polym Sci B Polym Phys 42(22):4095

    Article  CAS  Google Scholar 

  29. Taepaiboon P et al (2006) J Appl Polym Sci 102(2):1173

    Article  CAS  Google Scholar 

  30. Friedrich K et al (2002) J Mater Sci 37(20):4299

    Article  CAS  Google Scholar 

  31. Krumova M et al (2005) Progress Colloid Polym Sci 130:167

    CAS  Google Scholar 

  32. Utracki LA (2002) Introduction to polymer blends. In: Utracki LA (ed) Polymer blends handbook. Kluwer Academic, Dordrecht, pp 1–122

    Chapter  Google Scholar 

  33. Chung CI, Todd D, Case C (2001) In: Vlachopoulos J, Wagner JR Jr (eds) The SPE guide on extrusion technology and troubleshooting. Society of Plastics Engineers, Brookfield, pp 9.1–9.4

    Google Scholar 

  34. Leung KL, Easteal AJ, Bhattacharyya D (2007) Key Eng Mater 334–335:161

    Article  Google Scholar 

  35. Lin XD et al (2004) J Appl Polym Sci 93(4):1989

    Article  CAS  Google Scholar 

  36. Friedrich K, Fakirov S, Zhang Z (eds) (2005) Polymer composites: from nano- to macro-scale. Springer, New York

  37. Fakirov S, Evstatiev M, Petrovich S (1993) Macromolecules 26(19):5219

    Article  CAS  Google Scholar 

  38. Fakirov S, Evstatiev M, Friedrich K (2000) In: Paul DR, Bucknall CB (eds) Polymer blends: performance. Wiley and Sons, New York, pp 455–475

    Google Scholar 

  39. Fakirov S, Evstatiev M, Friedrich K (1998) In: Radusch HJ, Vogel J (eds) Polymerwerkstoffe 1998: Verarbeitung|Anwendung|Recycling. Martin-Luther-Universitaet Halle-Wittenberg, Halle/Saale, pp 125–133

  40. Evstatiev M, Fakirov S, Friedrich K (2000) In: Cunha AM, Fakirov S (eds) Structure development during polymer processing. Kluwer Academic Publisher, Boston, pp 311–325

    Chapter  Google Scholar 

  41. Mallick PK (ed) (1997) Composites engineering handbook. Marcel Dekker, New York, p 1249

    Google Scholar 

  42. Halpin JC, Kardos JL (1976) Polym Eng Sci 16:344

    Article  CAS  Google Scholar 

  43. Lin RJT et al (2007) In: 15th international conference on composites or nano engineering (ICCE–15), Haikou, Hainan Island, China

  44. Lin RJT, Bhattacharyya D, Fakirov S (2007) Key Eng Mater 334–335:349

    Google Scholar 

  45. Lin RJT, Bhattacharyya D, Fakirov S (2006) Intl J Modern Phys B 20(25–27):4613

    Article  CAS  Google Scholar 

  46. Shields RJ, Bhattacharyya D, Fakirov S (2008) Compos A Appl Sci Manuf 39(6):940

    Article  Google Scholar 

  47. Gajdos J et al (2001) Polym Test 20:49

    Article  CAS  Google Scholar 

  48. Pino M, Duckett RA, Ward IM (2005) Polymer 46(13):4882

    Article  CAS  Google Scholar 

  49. Liu RYF et al (2004) J Appl Polym Sci 94:671

    Article  CAS  Google Scholar 

  50. Sok RM (1994) Permeation of small molecules across a polymer membrane: a computer simulation study. University of Groningen, Groningen, pp 5–12

    Google Scholar 

  51. Massey LK (2003) Permeability properties of plastics and elastomers—a guide to packaging and barrier materials, 2nd edn. William Andrew Publishing, Norwich

    Google Scholar 

  52. Laverde G (2007) SPE Division 44 Newsletter 6(2):1

    Google Scholar 

  53. Griffith LG, Naughton G (2002) Science 295:1009

    Article  CAS  Google Scholar 

  54. Mooney DJ, Langer RS (1995) In: Bronzino JD (ed) The biomedical engineering handbook. CRC Press, Boca Raton

    Google Scholar 

  55. Vacanti JP (1988) Arch Surg 123:545

    Article  CAS  Google Scholar 

  56. Mikos AG, Temenoff JS (2000) Electronic J Biotechnol 3:114

    Article  Google Scholar 

  57. Evstatiev M, Nicolov N, Fakirov S (1996) Polymer 37(20):4455

    Article  CAS  Google Scholar 

  58. Fakirov S et al (2007) J Macromol Sci Phys 46:183

    Article  CAS  Google Scholar 

  59. Fakirov S, Bhattacharyya D, Shields RJ (2008) Coll Surf A Physicochem Eng Aspect 313–314:2

    Article  Google Scholar 

  60. Bhattacharyya D, Fakirov S (2008) In: Karger-Kocsis J, Fakirov S (eds) Nano- and micromechanics of polymers, blends and composites. Hanser, Munich, pp 167–205

Download references

Acknowledgements

The authors wish to acknowledge the support of the Foundation for Research, Science and Technology New Zealand for their sponsorship of this work through Grant #UOAX0406.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shields, R.J., Bhattacharyya, D. & Fakirov, S. Fibrillar polymer–polymer composites: morphology, properties and applications. J Mater Sci 43, 6758–6770 (2008). https://doi.org/10.1007/s10853-008-2693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2693-z

Keywords

Navigation